Cancer cell-selective killing polymer/copper combination
نویسندگان
چکیده
منابع مشابه
Enhanced lung cancer cell killing by the combination of selenium and ionizing radiation.
Selenium has been associated with anticancer activity by affecting multiple cellular processes. We reasoned that the simultaneous modulation of multiple radioresponse regulators by selenium should increase radiosensitivity if selenium is combined with radiation in cancer therapy. Therefore, we explored the possibility of whether we could obtain an enhancement of radiosensitivity by the combinat...
متن کاملSelective killing of cancer cells by suppression of geminin activity.
Eukaryotic cells normally restrict genome duplication to once per cell division. In metazoa, re-replication of DNA during a single S phase seems to be prevented solely by suppressing CDT1 activity, a protein required for loading the replicative MCM DNA helicase. However, siRNA suppression of geminin (a specific inhibitor of CDT1) arrested proliferation only of cells derived from cancers by indu...
متن کاملDisrupting Skp2-cyclin A interaction with a blocking peptide induces selective cancer cell killing.
Skp2 fulfills the definition of an oncoprotein with its frequent overexpression in cancer cells and oncogenic activity in various laboratory assays and therefore is a potential cancer therapy target. The best-known function of Skp2 is that of an F-box protein of the SCF(Skp2)-Roc1 E3 ubiquitin ligase targeting the cyclin-dependent kinase inhibitor p27(Kip1). Knockdown of Skp2 generally leads to...
متن کاملSelective killing of cancer cells by nanoparticle-assisted ultrasound
BACKGROUND Intense ultrasound, such as that used for tumor ablation, does not differentiate between cancerous and normal cells. A method combining ultrasound and biocompatible gold or magnetic nanoparticles (NPs) was developed under in vitro conditions using human breast and lung epithelial cells, which causes ultrasound to preferentially destroy cancerous cells. RESULTS Co-cultures of BEAS-2...
متن کاملSelective killing of p53-deficient cancer cells by SP600125
The genetic or functional inactivation of p53 is highly prevalent in human cancers. Using high-content videomicroscopy based on fluorescent TP53(+/+) and TP53(-/-) human colon carcinoma cells, we discovered that SP600125, a broad-spectrum serine/threonine kinase inhibitor, kills p53-deficient cells more efficiently than their p53-proficient counterparts, in vitro. Similar observations were ob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biomaterials Science
سال: 2016
ISSN: 2047-4830,2047-4849
DOI: 10.1039/c5bm00325c